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Bayesian Econometrics

Hidden Markov Models

Setting

Signal modeled as Markovian, nonlinear, non-Gaussian,
state–space models.
The unobserved signal (hidden states) {θt : t ∈ N}, θt ∈ Θ is
modeled as a Markov process of initial distribution π(θ0), and
transition equation π(θt |θt−1).
The observations {yt : t ∈ N+}, yt ∈ Y , are assumed to be
conditionally independent, given the process {θt : t ∈ N},
with marginal distribution f (yt |θt).

π(θ0)

π(θt |θt−1), t ≥ 1

f (yt |θt), t ≥ 1
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Hidden Markov Models

Objectives

The updating step given by the filtering distribution,
π(θt |y1:t) = f (yt |θt)π(θt |y1:t−1)∫

f (yt |θt)π(θt |y1:t−1)dθt

where π(θt |y1:t−1) =
∫
π(θt |θt−1)π(θt−1|y1:t−1)dθt−1 is

the prediction step.

The joint posterior distribution,
π(θ0:t |y1:t) = f (y1:t |θ0:t)π(θ0:t)∫

f (y1:t |θ0:t)π(θ0:t)dθ0:t

where π(θ0:t+1|y1:t+1) = π(θ0:t |y1:t)
f (yt+1|θt+1)π(θt+1|θt)

f (yt+1|y1:t)
.

I (gt) = Eπ(θ0:t |y1:t) [gt(θ0:t)] =
∫
gt(θ0:t)π(θ0:t |y1:t)dθ0:t
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Hidden Markov Models

Examples

Kalman filter: Gaussian linear model.

HMM filter: Partially observed finite state-space Markov
chains model.

5 / 33



Bayesian Econometrics

Why not MCMC or Importance Sampling?

Why not MCMC or IS?

No well suited for iterative problems

On–line prediction
Storage restrictions
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Sequential Importance Sampling

Importance Sampling

Importance Sampling

I (gt) =

∫
gt(θ0:t)π(θ0:t |y1:t)dθ0:t∫
gt(θ0:t)w(θ0:t)q(θ0:t |y1:t)dθ0:t∫

w(θ0:t)q(θ0:t |y1:t)dθ0:t

where w(θ0:t) = π(θ0:t |y1:t)
q(θ0:t |y1:t)

.
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Sequential Importance Sampling

Importance Sampling

Importance Sampling

Simulate N i .i .d particles
{
θ

(i)
0:t

}
according to q(θ0:t |y1:t). A

possible Monte Carlo estimate of I (ft) is

ÎN(ft) =
1
N

∑N
i=1 gt(θ

(i)
0:t)w(θ

(i)
0:t)

1
N

∑N
i=1 w(θ

(i)
0:t)

=
N∑
i=1

gt(θ
(i)
0:t)w̃(θ

(i)
0:t)

where w̃
(i)
t =

w(θ
(i)
0:t)∑N

j=1 w(θ
(j)
0:t)

.
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Sequential Importance Sampling

Sequential Importance Sampling

SIS

Setting q(θ0:t |y1:t) = q(θ0:t−1|y1:t−1)q(θt |θ0:t−1, y1:t), iterating
q(θ0:t |y1:t) = q(θ0)

∏t
l=1 q(θl |θ0:l−1, y1:l).Then,

w̃
(i)
t ∝w̃

(i)
t−1

f (yt |θ(i)
t )π(θ

(i)
t |θ

(i)
t−1)

q(θ
(i)
t |θ

(i)
0:t−1, y1:t)

Important case q(θ0:t |y1:t) = π(θ0:t) = π(θ0)
∏t

l=1 π(θl |θl−1).
So,

w̃
(i)
t ∝w̃

(i)
t−1f (yt |θ(i)

t )
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Sequential Importance Sampling

Sequential Importance Sampling

SIS shortcomings

It is a constrained version of IS.

IS is usually inefficient in high-dimensional spaces.

As t →∞, w̃
(i)
t → 0 for all i , except one.
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The Bootstrap filter

Origins

Sampling Importance Resampling

Random variable via a weighted bootstrap (Smith and
Gelfand, 1992)

Sampling Importance Resampling (SIR). Comment by D.
Rubin in Tanner and Wong (1987).
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The Bootstrap filter

Origins

Random variable via a weighted bootstrap (Smith and
Gelfand, 1992)

Given π(θ|y) = h(θ|y)∫
h(θ|y)dθ

and a proposal distribution q(θ),

such that we obtain θ(i) draws from q(θ), i = 1, 2, . . . ,N .

Then we define w(θ)(i) = h(θ|y)
q(θ)

, and w̃ (i) = w(θ)(i)∑N
j=1 w(θ)(j)

.

Then we draw θ∗(i), N times, from the discrete
distribution over

{
θ(1), θ(2), . . . , θ(N)

}
with replacement

and w̃ (i) as weights.
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The Bootstrap filter

Origins

Random variable via a weighted bootstrap (Smith and
Gelfand, 1992)

Observe that

P(θ∗ ≤ a) =
N∑
i=1

w̃ (i)1(−∞,a)(θ
(i))

=
1
N

∑N
i=1 w

(i)1(−∞,a)(θ
(i))

1
N

∑N
i=1 w

(i)

→
Eq

h(θ|y)
q(θ)

1(−∞,a)(θ)

Eq
h(θ|y)
q(θ)

=

∫ a

−∞
π(θ|y)dθ

A consistent estimator for
∫
h(θ|y)dθ is N−1

∑N
i=1 w

(i).
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The Bootstrap filter

The Bootstrap filter

Gordon et al. (1993). See Doucet et al. (2001), page 11.
1 Initialization, t = 0

For i = 1, 2, . . . ,N, sample θ
(i)
0 ∼ π(θ0), and set t = 1.

2 Importance sampling step

For i = 1, 2, . . . ,N, sample θ̃
(i)
t ∼ π(θt |θ(i)

t−1), and set

θ̃
(i)
0:t = (θ

(i)
0:t−1, θ̃

(i)
t ).

For i = 1, 2, . . . ,N, evaluate the importance weights, w
(i)
t = f (yt |θ̃(i)

t )

((Crassidis and Junkins, 2011, p. 286) suggest w
(i)
t = w

(i)
t−1× f (yt |θ̃(i)

t )).

Normalize the importance weights.

3 Selection step

Resample with replacement N particles (θ
(i)
0:t , i = 1, 2, . . . ,N) from the

set (θ̃
(i)
0:t , i = 1, 2, . . . ,N) according to the importance weights.

Set t ← t + 1, and go to step 2.
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The Bootstrap filter

The Bootstrap filter

Advantages

It is very quick and easy to implement.

It is modular, that is, when changing the problem one
need only change the expressions for the importance
distribution and the importance weights,

It can be straightforwardly implemented on a parallel
algorithm.

Allows easily carrying out sequential inference for very
complex models.
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The Bootstrap filter

The Bootstrap filter

Example: (Crassidis and Junkins, 2011, p. 285)

θt = 0.5θt−1 + 25 θt−1

1+θ2
t−1

+ 8cos(1.2t) + vt

yt = θ2
t

20
+ ut

θ0 ∼ N (0,
√

10), vt ∼ N (0,
√

10) and ut ∼ N (0,
√

1)
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The Bootstrap filter

The Bootstrap filter

Implementation

The proposal (importance function) is the stated
transition density (“the prior distribution”).

We can resample when the p.d.f. of the importance
weights is degenerate. This can be monitored using the
effective sample size.
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The Bootstrap filter

The Bootstrap filter

Disadvantages

1 The resampling step introduces extra MC variability.

2 The use of the state transition density as importance
distribution can often lead to poor performance, which is
manifested in a lack of robustness with respect to the
values taken by the observed sequence, for example when
outliers occur in the data or on the contrary when the
variance of the observation noise is small.

3 This procedure is not well suited to sample from
π(θ0:t |y1:t). This is because most of the particles come
from the same ancestor.
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The Bootstrap filter

The Bootstrap filter

To handle extra MC variability

1 Optimal kernel qt(θt |θt−1, yt) = πt(θt |θt−1)f (yt |θt)∫
πt(θt |θt−1)f (yt |θt)dθt . This

generates that the conditional variance of the weights is
zero, given the past history of the particles. Unfortunately,
it is intractable in most cases. See Auxiliary Particle
Filter, Algorithm 4 in page 908, Cappé et al. (2007).

2 Residual sampling (Liu and Chen, 1995)

3 Systematic resampling (Carpenter et al., 1999)
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The Bootstrap filter

The Bootstrap filter

To obtain π(θ0:t |y1:t)

π(θ0:t |y1:t) is very relevant to obtain good estimates of
static parameters.

Fixed–lag approximation (see (Kantas et al., 2009),
section 2.3.1 in page 5), Backward smoothing recursions
(see Cappé et al. (2007) Algorithm 5, page 914.),
Generalized two–filter smoothing (see (Kantas et al.,
2009), section 2.3.3 in page 6) can be good solutions to
obtain π(θ0:t |y1:t).
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The Bootstrap filter

The Bootstrap filter

To obtain π(θ0:t |y1:t)

Maximum a posteriori (MAP)
arg max

θ0:T

θ0:T |0:T (θ0:T |y1:T
) =

arg max
θ0:T

π0(θ0)
∏T

t=1 π(θt |θt−1)
∏T

t=1 f (yt |θt)

This can be done using Algorithm 6, page 916 in Cappé
et al. (2007).

MCMC steps within SMC. See section 4.2.4, page 15,
Kantas et al. (2009). However, it suffers from the
standard degeneracy problem.
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Estimation of static parameters

Estimation of static parameters

Estimation of static parameters (Cappé et al., 2007, Kantas
et al., 2009, 2015)

Batch methods: Data is available for estimation
Particle MCMC methods (Andrieu et al., 2010).

Particle Independent M–H. Section 2.4.1, (Andrieu
et al., 2010).
Particle Marginal M–H. Section 2.4.2, (Andrieu et al.,
2010) and Section 4.1.1, Kantas et al. (2009).
Particle Gibbs sampler. Section 2.4.3, (Andrieu et al.,
2010).

Particle approximation to likelihood

Expectation-Maximizationa)

Gradient based methods:
θk+1 = θk + γk+1∇θlT (θ)|θ=θk . γk is a sequence
of small positive real numbers.

b)

22 / 33



Bayesian Econometrics

Estimation of static parameters

Estimation of static parameters

Estimation of static parameters (Cappé et al., 2007, Kantas
et al., 2009, 2015)

On–line estimation

Adding MCMC steps among the particles (Gilks and
Berzuini, 2001).
Treat static parameters as dynamic introducing
negligible shocks
Bootstrap filter with parameter regeneration: Requires
sufficient statistics. This can be done using Algorithm 7,
page 919 in Cappé et al. (2007).
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Estimation of static parameters

Estimation of static parameters

Estimation of static parameters (Kantas et al., 2009, 2015)

1 Gradient methods is preferable if the step–size sequence
γk+1 is replace by −γk+1Γ−1

k where Γk is Hessian of lT (θ),
which can be computed using SMC techniques. Then, the
rate of convergence is quadratic, and faster than the EM
which converges linearly. In addition, the gradient
algorithm can be implemented even when the M–step
cannot be solved in close–form.

2 EM can be preferable if the M–step can be computed
analytically. In addition, the EM is numerically more
stable and typically computationally cheaper for high
dimensional spaces.

3 Both algorithms are locally optimal.
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Estimation of static parameters

Estimation of static parameters

Estimation of static parameters (Kantas et al., 2009, 2015)

1 MCMC steps among particles are not robust. This is
because these algorithms are based on the SMC
approximation of π(θ0:t |y0:t) whose dimension increases
with t. So, they suffer from the standard degeneracy
problem. However, these methods cannot completely rule
out. For small time horizons, low dimensional parameter
space (typically not more than 5-10), informative priors
and large number of particles, they can perform well
(Kantas et al., 2009).
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Nonfiltering Uses of SMC

Nonfiltering Uses of SMC

Population Monte Carlo (Cappé et al., 2004)

The main objective of PMC is to draw samples of size T
of the targeting distribution (π). That is, the support of
π is RT . In this setting the targeting distribution is static.

PMC borrows from MCMC algorithms for the
construction of the proposals, from IS for the
construction of appropriate estimators.

Extending regular importance sampling techniques to
cases where the importance distributions for θ

(i)
t may

depend on both the sample index t and the iteration
index i , thus possibly on past samples, does not modify
their validity.
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Nonfiltering Uses of SMC

Nonfiltering Uses of SMC

Population Monte Carlo (Cappé et al., 2004)

The main concern is the proposal distribution.

PMC produces i .i .d chains. This is a huge advantage
over MCMC methods because the latter have acceptance
rate which decreases approximately as a power of T .

The MCMC environment is hasher for adaptive schemes,
because adaptivity cancels the Markovian nature of the
sequence and thus calls for more elaborate ergodicity
results.
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Nonfiltering Uses of SMC

Nonfiltering Uses of SMC

Population Monte Carlo (Cappé et al., 2004)

PMC methods ergodicity is not an issue because the
validity is obtained via importance sampling justifications.

PMC does not require stopping rules as MCMC.

PMC is very appealing in models with latent variables,
such as models where data augmenting is a good
strategy, for instance: probit and multinomial models.
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Nonfiltering Uses of SMC

Nonfiltering Uses of SMC

Algorithm (Cappé et al., 2004)

For i = 1, 2, . . . ,N

For t = 1, 2, . . . ,T

Select the generating distribution qti .a)

Generate θ
(i)
t ∼ qti (θ), and compute

w
(i)
t = π(θ

(i)
t )/q(θ

(i)
t ).

b)

Normalize w
(i)
t , that is, obtain w̃

(i)
t .c)

Resample T values from θ
(i)
t ’s with replacement,

using w̃
(i)
t , to create the sample

(θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
T ).

d)
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Nonfiltering Uses of SMC

Nonfiltering Uses of SMC

Algorithm (Cappé et al., 2004)

A central feature of PMC is that the proposal can be
individualized at each step of the algorithm while
preserving the validity of the method.

They can be picked according to the performance of the
previous q

(i−1)
t ’s and, in particular, they can depend on

the previous sample (θ
(i−1)
1 , θ

(i−1)
2 , . . . , θ

(i−1)
T ). For

instance, the q
(i)
t ’s are random walk proposals centered at

the θ
(i−1)
t ’s, with various possible scales chosen from

earlier performances.
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Nonfiltering Uses of SMC
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